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ABSTRACT 

Let ~ be a family ofn boxes in R d (with edges parallel to the coordinate axes). 
For k = 0, l, 2 . . . . .  denote by fk(~) the number of subfamilies of ~ of size 
k + I with non-empty intersection. We show that iff,(~) = 0 for some r _-< n, 
then 

fk(~)<--_fk(n,d,r), k = l  . . . . .  r - l ,  

where thefk(n, d, r) are certain definite numbers defined by (3.4) below. The 
result is best possible for each k. For k = 1 it was conjectured by G. Kalai 
(Israel J. Math. 48 (1984), 16 l -  174). As an application, we prove a 'fractional' 
Helly theorem for families of boxes in R d. 

I. Introduction 

In this pape r  we are concerned with intersect ion proper t ies  o f  finite famil ies  

o f  boxes in R d. We establish what  m a y  be called an U p p e r - b o u n d  T h e o r e m  for 

such families (see T h e o r e m  3.2 below). In  part icular ,  we p rove  a conjecture 

p roposed  in 1984 by Gil Kalai.  

A box  in R d is a cartesian p roduc t  o f  the fo rm 

II X . . .  X Id, 

where for e a c h j  = 1 . . . .  , d,  1 i is a n o n - e m p t y  closed convex set (or i n t e r v a l ) o n  

the x fax i s .  (Here  we refer to a car tes ian coord ina te  sys tem o f R  d which is kept  

fixed throughout  the paper . )  In o ther  words,  a box  is a convex  paral le lohedron,  

possibly unbounded ,  with edges parallel to the coord ina te  axes. The  entire 

space R d is a box, and  so is every hyperp lane  parallel to one o f  the coordinate  
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hyperplanes 

/ - / j :  = { ( X  1 . . . .  , X d ) ~ R  d ]Xj -m- 0),  j = 1 . . . .  , d. 

Intersection properties of boxes (or rather of families of such) have been the 
subject of numerous investigations. We refer the interested reader to Section 
l0 in Hadwiger, Debrunner and Klee [10] and to the papers by Santal6 [19], 
R6nyi, R6nyi and  Sur~inyi [16], Asplund and Gr(inbaum [3], Burling [5], 
Wegner [22], Roberts [ 17], Danzer and Griinbaum [6], and Gy~rf~is, Lehel and 
Tuza [9], to mention only a few. 

Here we shall study intersection properties of a different kind (to be 
described in a moment). Our interest in these arose when we stumbled upon 
Conjecture 6.1 in Kalai [12]. The present paper is the outcome of our 
(successful) effort to prove and at the same time extend the assertion of Kalai's 

conjecture. 

We start with some definitions and general remarks. 

Let ~' be a finite family of boxes in R d. (Actually, all families considered in 
this paper will be finite.) The intersection graph of ~ ,  denoted G(~),  is the 
graph whose vertices are in one-to-one correspondence with the members of 
and in which two vertices are joined by an edge only when the corresponding 
sets have a common point. It is well known that G(~)  completely determines 
the intersection pattern (or nerve) of ~ .  That is, G(~)  can be used to decide 
whether or not a given subfamily .~ of ~ has non-empty intersection. In fact, 
projecting the boxes into the coordinate axes and applying Helly's theorem for 
the real line, one finds that .~ has non-empty intersection if, and only if, each 
pairwise intersection of sets in .~ is non-empty. Therefore we say that two 
families of boxes in R d a r e  of the same intersection type provided their 

intersection graphs are isomorphic. 
Now, for k = 0, l, 2 , . . . ,  letfk(~') denote the number of subfamilies of ~ of 

size k + 1 with non-empty intersection. Equivalently, fk(~) is the number of 
complete subgraphs (or cliques) of G(~)  having k + 1 vertices. In particular, 

f0(~) is the number of vertices and f~(8) is the number of edges of G(~).  
For the remainder of this paper we assume that n and r are two given integers 

satisfying 1 < r < n. 
Kalai's conjecture can be stated as follows (see [12], p. 173): 

CONJECTURE. Let ~ be a family  o f  n boxes in R d. Suppose that no r + 1 

members o f  ~ have a common point. Then 
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(1.1) I t,(n), 

f l ( ' )  < ( r - ~  
t td(n -- r + d) + (n - r + d)(r - d) + 2 ' 

i f r < d ,  

i f r > d ,  

where t,(n) denotes the maximum possible number of  edges in a graph on n 
vertices containing no complete subgraph on r + 1 vertices. 

We abbreviate the right-hand side of (1.1) b y f ( n ,  d, r). Thus it is claimed 

that i ff0(~) -- n a n d f ( ~ ' )  = 0, thenf~(~') _-< f ( n ,  d, r). Or, in graph-theoretic 
terms, if  G ( ~ )  has n vertices and clique number at most  r, then G ( ~ )  has at 
most  f ( n ,  d, r) edges. (The clique number  is the size of a largest clique.) 

We need to say a few words about the function tr(n). The letter t stands for 
Tuffm who determined the exact value of t~(n) in 1941 (Tur6n [20], [21 ]). This 
is regarded as the first major result in extremal graph theory (see Bollob~s [4], 
p. 292). Partition the number  n into r almost equal parts nl . . . .  , n ,  say. ) Then 

(1.2) 
i , j - 1  i l l  
i<j 

In other words, t,(n) is the second elementary symmetric function of 
n ~ , . . . ,  n ,  (For a generalization, see Section 3 below.) More explicitly, if we 
write n = pr + q, where p and q are integers satisfying 0 =< q < r, then q of the 
above parts are equal to p + 1 and r - q are equal to p. This yields 

0.3) 

Tur6n (loc. cit.) has also shown that there exists, up to isomorphism, only 
one graph on n vertices having t,(n) edges and clique number  at most r. This 

graph, usually denoted T,(n) and called the Turdn graph, is the complete 
r-partite graph on n vertices whose vertex classes are as nearly equal as 
possible. This means that the vertex set of T, (n) splits into r subsets containing 
n , . . . ,  nr vertices, respectively, with two vertices joined by an edge if, and 

t Arranged in increasing order, these parts are 

[_.1 r.+11 r,+,.-,1 

where [. 1 denotes the greatest-integer function. (Cf. (3.2) below.) 
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only if, they belong to different subsets. The standard notation for this graph is 
K(nl . . . . .  nr). 

The first aim of the present paper is to prove Kalai's conjecture. This will be 
done in Section 2. Here we point out that the right-hand side of(1.1) cannot be 

replaced by a smaller number.  In fact, Kalai (loc. cit.) describes a family of n 
boxes in R d, ~ = ~ ( n ,  d, r), which satisfies f~(~) = 0 and f l (~)  = f~(n, d, r). 
When r < d, ~(n ,  d, r) consists ofni  distinct translates of Hi for i = 1 , . . . ,  r, 
where the ni are the parts used in (1.2) above. Clearly, G ( ~ ( n ,  d, r)) ~- Tr(n). 
When r > d, partition the number  n -  r + d into d almost equal parts 
n~ . . . . .  n~, say. Then ~(n ,  d, r) consists of  ni distinct translates of  Hi for 
i = 1 . . . . .  d, as well as r - d  copies of R d. In this case, G ( ~ , ( n , d ,  r))-~ 

K(n~ . . . . .  n~, 1 . . . . .  1). 
The main result of this paper is presented in Section 3. There we shall prove 

that if ~' is a family of n boxes in R d withf~(~) = 0, then for k = 1 , . . . ,  r - 1, 

(1.4) fk (~)  < fk(~(n ,  d, r)). 

Notice that (1.4) generalizes (1.1) and is, by definition, best possible for all k. 
Explicit expressions for the numbers fk(~(n ,  d, r)) will be obtained in Section 
3. We call (1.4) the Upper-bound Theorem (UBT) for families of boxes in R d, 
by analogy with the well-known UBT for convex polytopes first proved by 
McMullen [ 15], or the more recent UBT for families of(arbitrary) convex sets 
due independently to Kalai [12] and the author [7]. (Compare Section 3 for 
further remarks.) 

A family of boxes in R d which attains the upper bound in (1.4) for each k is 
said to be extremal.  One example is, of course, provided by4Calai's family 
~(n ,  d, r), but in general there are many "other examples (distinguished by 

their intersection types). For a detailed study of the geometrical properties of 
such families, the reader is referred to the forthcoming Part II of the present 
paper. There we shall, in fact, completely characterize the intersection graphs 
of extremal families in R d (up to isomorphism). 

The final Section 4 of  this paper is devoted to an application of  the Upper- 
bound Theorem. We shall use the inequalities (1.4) to establish a 'fractional' 
Helly-type theorem for families of  boxes in R d. (Here 'fractional' is understood 
in the sense of Katchalski and Liu [14]; the precise definition will be given in 
Section 4.) We thereby extend and slightly sharpen an earlier 'fractional' result 
for boxes due to Katchalski [ 13]. 
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2. Proof of Kalai's conjecture 

In this section we shall establish Kalai's conjecture described in the Intro- 
duction. In other words, we shall prove assertion (1.1). 

We begin with a useful definition. Let 2 be a family of boxes in R d, and let Q 
be an arbitrary member of 2 .  We call Q exposed in 2 provided Q has a 
supporting hyperplane H, say, such that the following is true: H is parallel to 
some coordinate hyperplane Hi, and if P E 2 and P n H = ~ ,  then P lies in 
the open half-space bounded by H whose complement contains Q. (We express 
this latter property by saying that P is separated from Q by H.) The pair (Q, H) 
is then also called exposed in 2 .  Strictly speaking, the above description 
applies to the case where Q is d-dimensional. By definition, any member of 
dimension less than d is automatically exposed in ~ and forms an exposed 
pair with any hyperplane containing it (and parallel to some ~ ) .  

It is clear that unless the family 2 consists only of copies o f R  d it has at least 
one exposed member. Just start with a suitable hyperplane 'at infinity' and let 
it sweep across 2 ,  always keeping it parallel to some fixed/-/j, until for the first 
time it is about to leave a member of ~ .  This member is then exposed in ~ .  

As simple as it might appear, the idea of using exposed pairs will be our main 
geometrical tool in what follows. For example, given such a pair (Q, H), if a 
member of 2 intersects Q, then it necessarily intersects Q n H. (For this it is 
essential that 2 consists of boxes.) Thus the family of all non-empty intersec- 
tions P n Q, where P runs through ~ \  {Q}, may be regarded as a family of 
boxes in H ~ R d- ~ (with edges parallel to the induced coordinate axes). This 
fact will enable us to proceed by induction on the dimension. 

Having made these preliminary remarks, let us now turn to Kalai's conjec- 
ture. Recall that f (n ,  d, r) is, by definition, the right-hand side of (1.1). We 
need to compare the values of f (n ,  d, r) andf (n  - 1, d, r), when n > r. Since 
it is readily verified that 

t r ( n ) - G ( n - l ) = [ - ~ r  1 n], 

we find 

(2.1) f ( n ,  d, r) - f ( n  - l, d, r) = 

n] 
r,] 

i f r  _--<d, 

+ r -  1, i f r > d .  
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(See Lemma 3.1 for a generalization.) Now we can prove 

THEOREM 2.1. Let 9 be a family of  n boxes in R d. Suppose that no r + 1 
members of  9 have a common point, i . e . , f ( 9 )  = O. Then f~( 9 )  < f (n ,  d, r), 
where fl(n, d, r) is defined by (1.1) above. 

PROOF. We use induction on d and n. Let 9 be a family of  boxes as 

described in the theorem. Since f~(9)  < tr(n) is obvious from the definition of  

Tunin's function, we may assume that r > d. First consider the case d = 1. 

Then 9 consists of  intervals on the real line, and the assertion takes the form 

f ( 9 )  < ( ~ ) +  (r - 1 ) ( n - r ) .  

This was proved by Abbott and Katchalski [1]. (Proofs also appear in [2], [7], 

and [12]; see the remarks preceding (3.1) below.) Next suppose n = r. In this 

case the assertion reads 

which is trivial. Finally, suppose that d > 1 and n > r. In view of (2.1) it 

suffices to show that some member of  9 intersects at most 

[ 
other members of  9 .  We claim that such a set can be found among the exposed 

members of  9 .  In fact, we shall prove a bit more: 

(2.2) There exists an exposed pair (Q, H) in 9 with the property that at least 
[(n - r + d - 1)/d] members of  9 are separated from Q by H. 

Notice that 

11 -~ - - n - l ,  

so once (2.2) is proved, we are done. Notice, too, that no set in 9 can intersect 

more than r - 1 other sets. Hence (2.2) is trivially true when d = 1. Suppose, 

then, that d > 1 and choose (Q, H)  to be any exposed pair in 9 .  (Since n > r, 
such pairs exist.) Now (Q, H)  either has the desired property or not. Assume it 
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has not. Then 

(2.3) m >  - - ( n - r  + r + l ,  

where m is the number of sets in 

. ~ : = ( P A H [ P E ~ , P  A H  ~ } .  

We may regard .~ as a family of boxes in R a-~. Note that m > r. Hence by the 

induction hypothesis, .~ has an exposed pair (Qo, Ho), say, such that at least 

[(m - r + d - 2)/(d - 1)] members of .~ are separated from Q0 by Ho. Now 

Qo --- Q' n H for some Q ' E  P, and H0 c H is (d - 2)-dimensional. Let H '  be 

the hyperplane in R a orthogonal to H which contains H0. Going back to the 

original sets we deduce that at least [(m - r + d - 2)/(d - 1)] members of  

are separated from Q' by H'. Of  course, Q' need not be exposed in ~ .  But in 

this case ~ has an exposed pair (Q", H")  such that H"  is parallel to H '  and lies 

on the same side of  H '  as Q' does. We claim that Q" is the set (or one of  the 

sets) we are looking for. In fact, all we have to do is to check that 

[ m - r + d - 2 ] > [ n - r + d - 1 ]  

d - 1  = d " 

In view of (2.3), this will follow from 

( n - r )  > n - r - 1  

(2.4) -- 1 = d " 

Write n - r = p d  + q, where p and q are integers satisfying 0 _-< q < d. Then 
(2.4) reduces to 

__> . 

1 

In this inequality the left-hand side is always 0. The fight-hand side is 0, when 

q > O, and - 1, when q = O. This proves the theorem. [] 

As stated in the Introduction, the upper bound obtained in Theorem 2.1 is 
the best posible. Suppose it is attained by ~ ,  that is, f~(~)  = f~(n, d, r). Then, 

by (2.1), each member of  ~ intersects at least 
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r,l + r l 

other members, and some set in 0~ (exposed, if n > r) intersects precisely that 
many members. For later use (in Part II) we record the following fact: 

(2.5) I f  fl( O~) = f (n ,  d, r) and, moreover, n - r  is divisible by d, then for 
each exposed pair (Q, H) in 0', Q intersects precisely 

[d d_____~l ( n - r ) ]  + r - I  

other members of ~ and is separated by H from the remaining 
[(n - r + d - 1)/d] members. 

Assume, to the contrary, that Q intersects more than the above number  of 
sets in ~'. Since the inequality (2~4) is strict when d divides n - r, it follows 
that Q' (the set used in the proof  of Theorem 2.1) intersects less than the above 
number  of sets. This is a contradiction. 

I f  n - r is not a multiple of d, then assertion (2.5) need not hold. (It will be 
shown in Part II that (2.5) holds only when ddivides n - r.) For example, take 
r = 3 and consider the two families of 6 rectangles in the plane illustrated in 
Fig. 1. Both families attain the upper bound f (6 ,  2, 3 ) =  I1, and up to 
intersection type they are the only families with this property. The family on 
the left is (isomorphic to) Kalai's example 4(6,  2, 3). Each family has 4 
exposed members, two of which (the shaded ones) intersect 4, and not 3, other 
members. 

: 

:: : | : | : : : : 1  

i 

• 

Fig. I. 
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3. An upper-bound theorem 

As before, we are concerned with families ofn  boxes in R d in which no r + 1 

members have a common point. Given such a family 2 ,  recall that fk (~ )  

denotes the number of intersecting subfamilies of ~ of size k + 1. Equiva- 

lently, fk (~ )  is the number of  cliques of  size k + 1 in the intersection graph 

G(~). 
Having proved Kalai's conjecture, that is, having determined the best upper 

bound for f l ( ~ )  as a function of n, d and r, it is natural to inquire about best 

upper bounds for the numbers 

A ( ~ ) , . . - ,  f~ - , (2 )  

as well. It will be seen that after the bound onf~(~)  has been established, the 

remaining bounds are obtained almost for free. No further geometry will be 

needed. 

This section is devoted to the statement and proof of what we call the Upper- 
bound Theorem UBT for families of boxes in R a. Namely we shall show that, 

subject to the above assumptions, 

f k ( ~ ) < f k ( ~ ( n , d , r ) )  f o r k =  1 , . . . , r -  1, 

where C~(n, d, r) is Kalai's family described in Section 1. (Compare (1.4).) 

Furthermore, we shall prove that if r >_- d and equality holds in the above 

relation for some k E { d , . . . ,  r - 1 } ,  then equality holds for each k ~  
{ 1 , . . . ,  r - 1 }. The reader may observe that this behavior of t h e f k ( : )  is, in a 
sense, typical of  upper-bound theorems. Consider, for instance, the UBT for 
families of  (arbitrary) convex sets in R a proved independently by Kalai [ 12] 

and the author [7]. (For a subsequent simplified proof, see Alon and Kalai [2].) 
This theorem asserts that i f r  _-> dand  3¢f is a family o fn  convex sets in R d with 

f~(~)  = O, then 

(r-.)(n-r+.) 
(3.1) f k ( ~ )  < Y, 

j=O k - j + l  j 

for k = 1 . . . .  , r - 1. Moreover, equality in (3.1) for some k ~ { d , . . . ,  r - 1} 

forces equality for each k ~ { 1 . . . .  , r - 1 }. The latter occurs, e.g., when 

consists of  n - r + d hyperplanes in general position in R d as well as r - d 
copies of R d. 

To begin with, let us derive explicit expressions for the numbers 
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fk(~(n ,  d, r)). This is easily done with the help of symmetric functions. For 

j = 0, l, 2 . . . .  , set 

(3.2) s j ( n ,  r )  " = . . .  , 

where the sum is extended over all systems of indices il . . . . .  ij such that 

0 -<_ il < . . .  < ij _-< r - I. Thus sj(n, r) is the j th  elementary symmetric func- 

tion of the parts n~ . . . . .  nr used to represent t,(n) in Section 1. In particular, 

So(n, r) -- 1 and sj(n, r) = 0 fo r j  > r. A more concise formula for sj(n, r) can 

be obtained by writing n = pr + q, where p and q are integers satisfying 

0 -<_ q < r. Then 

(3.3) sj(n, r) = (p + 1)'p j-i. 
i-o j -  

Clearly,  s2(n, r)  -- tr(n). Hence (3.2) and (3.3) are generalizations of(1.2) and 

(1.3), respectively. 

Now define, for k = 0, l, 2 . . . . .  

U-o k - j + l  s j ( n - r + d , d ) ,  ifr>=d. 

It is straightforward to check thatfo(n, d, r) -- n andfk(n, d, r) = 0 lot k ~ r, 

and that fl(n, d, r) is indeed equal to the right-hand side of (1.1), as it should 

be. More generally we have, for all k, 

(3.5) fk(n, d, r) -- J~(C~(n, d, r)). 

This follows at once from the definition of  Kalai's family and the fact that if 

arises from 2 '  by adding r - d copies of R d, then for each k, 

A ( a * )  = Y, 
j-0 k - j  + 1 

: = 1). 

Next we need to evaluate the difference between f k (n ,d , r )  and 

fk(n -- l, d, r), when n > r. In doing this we shall make use of the identity 
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(3.6) r - 1 

which holds for i = 0 . . . .  , r - 2 (and, o f  course, r > 1). To prove (3.6), we 

may  as well assume that  1 _-< n _-< r, since subtracting a multiple o f r  f rom n on 

both sides does not affect the equality. Hence 

and we are left with showing that 

f o r / = 0  . . . . .  r - 2 .  

This, in turn, is an immedia te  consequence of  n + i < 2r - 1. 

We can now state the crucial recursion formula which extends that  of(2.1). 

LEMMA 3.1. F o r n > r a n d k = l , . . . , r - l , w e h a v e  

fk(n ,  d,  r) - fk(n -- 1, d,  r) 

PROOF. First suppose r < d. Then it is to show that  

Sk+,(n, r) -- Sk +l(n - - 1 ,  r ) - - - - - S k ( [ ~ r  1 n ] , r - - 1 ) .  

But to derive sj(n - 1, r) from sj(n, r) is very simple. Just write [(n - 1)/r] in 

place of[(n + r - 1)/r] whenever the latter factor occurs on the right-hand side 

of  (3.2). Since 

we easily deduce that 
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Sk+~(n,r) - -sk+,(n  -- 1, r ) =  Y~ . . .  , 

where the sum is over all il . . . . .  ik satisfying 0 < i~ < • • • < ik < r -- 2. In view 

of  (3.6), this proves the assertion when r < d. 

Next we assume that r > d. The reasoning in this case is completely 

analogous to that used above. According to (3.4), it is enough to show that 

s)(n - r + d, d)  - sj(n - r + d - 1, d)  

=s (I ,) 
=s (I 

fo r j  = 1 . . . .  , d. This follows exactly as before, except that in (3.6) we have to 

replace n and r by n - r + d and d, respectively. This finishes the proof  of  the 

lemma. [] 

Turning now to the main result of  this paper (i.e., assertion (1.4)), we 

distinguish two cases. 

First we remark upon the case r < d. It should be clear by now that the 
problem of finding tight upper bounds for thefk ( 2 )  is, in this case, essentially a 

graph-theoretical problem. So, given a finite graph G, writefk(G) to denote the 

number of  its cliques of  size k + 1. (Strictly speaking, fk(G) is already defined 

since Roberts [ 17] has shown that every graph is the intersection graph of  some 

family of  boxes.) Observe thatf~(Tr(n)) = Sk + t(n, r). Then we have what might 

be called an UBT for graphs: 

(3.7) Suppose G has n vertices and clique number  at most  r, i.e., fo(G) = n 

and  f ( G ) = O .  Then, for  k =  1 . . . .  , r -  1, f k ( G ) < S k + l ( n , r ) .  Moreover, i f  

equality holds in this relation for  some k,  then G ~ Tr(n ), and  equality holds for  

each k. 

When k = 1, this becomes Tur~in's theorem. As far as we know, the above 

extension was first proved by Zykov [23] and later, independently, by Had~ii- 

vanov [11] and Roman [18]. These proofs are rather long and somewhat 

involved. It seems that the simplest way to establish (3.7) is to imitate the 

proof  of  Theorem 3.2 below. (This approach is used in the author's note [8].) 

For the remainder of  this section we assume that r > d. 
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Then, finally, we have 

THEOREM 3.2. Let ~ be a family of  n boxes in R d. Suppose that no r + 1 
members of  ~ have a common point. Then, for k = 1 , . . . ,  r - 1, 

fk( ~ )  < fk(n, d, r), 

where fk(n, d, r) is defined by (3.4) above. Moreover, i f  equality holds in this 
relation for some k E { d , . . . ,  r - 1 }, then equality holds for each k E 
{1 . . . . .  r - l } .  

Clearly, the first assertion generalizes Theorem 2.1. The reader will observe 
that Theorem 3.2 resembles the UBT for arbitrary convex sets (see (3.1) and 
the remarks following it) most closely in form. 

PROOF. We use induction on d and n. Let ~ be a family of  boxes as 
described in the theorem. Suppose first that d = 1. Then, by (3.4), the assertion 
takes the form 

= + ( n  - r ) .  
k + l  k 

This is the special d = 1 of  the inequality (3.1). For a proof  of  the equality 
assertion in this case, see [7]. Suppose next that n -- r. Then for each j ,  

So the assertion reads 

s j ( n - r  + d, d) = (jd). 

__< E - -  
~=o k - j + l  k + l  ' 

which is trivial. If  the bound (k ~ 1) is attained for some k, that is, if each k + 1 
members of ~ have a common point, then ~ has non-empty intersection, and 
the bound is attained for each k. 

Suppose, finally, that d > 1 and n > r. Choose an exposed member  of ~ ,  say 
Q, which intersects at most 

other members of ~ .  That such sets exist was demonstrated in the proof  of  
Theorem 2.1. Set ~ ' : - -  ~ \ { Q }  and 
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; ~ ' : = { P A Q  le  ',t'n Q 

Then f~(~') = f _  I ( ~ t t )  = 0. Recall from Section 2 that ~ "  can be viewed as a 
family of  boxes in R a-l .  Therefore the induction hypothesis implies, for 
k = l  . . . .  , r - l ,  

(3.8) fk(~ ' )  < fk (n  -- 1, d, r), 

(3.9) f k _ l ( ~ ' )  < fk_l ([d--d 1 ( n - r ) ] + r - 1 , d - 1 ,  r - 1 ) ,  

and from Lemma 3.1 we conclude that 

fk (~)  = fk(~ ' )  + fk- , (~ '")  < fk(n, d, r), 

as required. 
Suppose, now, that equality holds in the last relation for some k E 

{d . . . . .  r - 1 }. Then equality must hold (for that particular k) in both (3.8) 
and (3.9). Appealing once more to the induction hypothesis we deduce that 
equality holds in (3.8) and (3.9) for each k. This in turn implies f k ( ~ ) =  
fk(n, d, r) for k = 1 , . . . ,  r - 1, and the proof  is complete. [] 

At this point we wish to repeat a remark made at the end of Section I. In 
contrast to what is true for r _-< d (see (3.7) above), the families of boxes which 
attain the upper bounds in Theorem 3.2 are far from being unique. However, it 
is still possible to classify the intersection graphs of such families (called 
extremal in Section 1), when r >_- d. This will be the topic of Part II of  the 

present paper. 
We conclude this section with an open problem. This, too, concerns the 

equality assertion of Theorem 3.2. We strongly believe that equality in 

fk (~ )  ----< fk(n, d, r) for each k = 1 . . . . .  r - 1 is already implied by the fact that 
equality holds for some such k. At least we have no examples indicating that 
the stronger condition stated in the theorem is necessary for the result to hold. 
The proof of Theorem 3.2 shows that in order to establish what would be a 
strengthening of the UBT for boxes, it is enough to verify the following 

CONJECTURE. Let G be the intersection graph of a family of n boxes in R d. 
Suppose that G has clique number at most r, where d < r < n, and f (n ,  d, r) 
edges. Then G contains f2(n, d, r) triangles. 
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4. A 'fractional' theorem 

In an extension of the classical Helly intersection theorem, Katchalski and 
Liu [ 14] have introduced the concept of a 'fractional' Helly-type theorem. The 
most general result of this kind for families of convex sets was found by Kalai 
[12]. In this final section we establish the analogous 'fractional' result for 
families of boxes in R d. 

Briefly, the idea behind a 'fractional' theorem is as follows. Let p and a be 
positive real numbers such that the following is true: "If 3(c is a family of n 
convex sets in R d, and if the number of intersecting subfamilies of 3V of size 
d + 1 exceeds a(d~-~), then ~ contains a subfamily with non-empty intersec- 
tion whose size exceeds pn'. Of course, this makes little sense when p >_- 1 or 
a _-> 1. Katchalski and Liu [14] have shown that for any given p < l, the 
number a in the above statement can indeed be chosen to satisfy a < 1. (This is 
a priori not clear.) Furthermore, the smallest possible such a tends to 0 when p 
does. On the other hand, p - -1  implies a-*  1. This is essentially Helly's 
theorem. 

Let a(p, d, k) be the smallest number a such that the statement above holds 
with d + 1 replaced by some fixed k >_- d + 1. The problem is, of course, to 
explicitly determine a(p, d, k). This was done for d = 1 and k = 2 by Abbott 
and Katchalski [1], and for arbitrary d and k by Kalai [12]. Applying the 
inequalities (3.1) of the UBT for convex sets in R d, Kalai proved 

(4.1) a(p, d, k) = Y~ pk-J(1 --p)J. 
j=0 

In particular, a ( p , d , d +  1)= 1 - ( 1  _p)d+~. See Section 4 in [12] for 
details and related results. 

Here we shall obtain the analogue of assertion (4.1) for families of boxes in 
R d. We begin by introducing the function tlV, d, k, n) which plays the same 
role for boxes as does the function ~(p, d, k, n) in [12] for arbitrary convex 
sets. 

DEFIrqITIOrq 4.1. For 0 < p < l  and 1 < k  <n ,  let ~/(p,d,k,n) be the 
smallest real number rl with the following property: I f  ~ is a family of  n boxes in 
R d, and iffk-~(~') > r/(~), thenftonl(~' ) > O. 

Clearly, ~l(P,d, k, n) exists. It follows directly from the definition that 
r/(p, d, k, n) is increasing in p (for fixed d, k, n) and in d (for fixed p, k, n). For 
fixed p, d, and n, t/(p, d, k, n) is decreasing in k (see [12], p. 167). 



298 J. E C K H O F F  Isr. J. Math .  

Now for 0 < p < 1 and k > I, set 

(4.2) t/(p, d, k)" = sup t/(p, d, k, n). 
n>k 

Thus t/(p, d, k) is the smallest number  t /such that the property described in 
Definition 4.1 holds for all families of boxes in R d, regardless of how many 

members they have. 
To evaluate r/(p, d, k), we shall make use of Theorem 3.2. As usual, (d)j 

denotes the falling factorial d(d - 1). • • (d - j + 1) (with (d)0 : = 1). 
Then we have 

THEOREM 4.2. For O < p < 1 and k > 1, 

d 
tl (p, d, k ) = ~, 

j~O 

(d)j 
p k - J ( 1 - p ) J  dj 

This should be compared with formula (4.1) above. Of course, the two 

expressions are the same for d = 1. Remember,  however, that a(p, d, k) is 
defined only when k > d. 

PROOF. Let p, d, and k be given, and suppose n > k. According to 
Theorem 3.2, fk_ ~(n, d, r) is the smallest integer such that, for any family ~' of 
n boxes in Rd, fk_l(~')>fk_~(n, d, r) implies f , ( ~ )  > 0. Since fk_,(n, d, r) is 
increasing in r (for fixed n, d, k), one easily obtains 

t l ( p ,d , k , n )=  fk-1(n,d,[Pnl). 

Now assume [pn] > d. Then from (3.2) and (3.4) it follows that 

tl(p' d' k' n) = (~) - '  ~ ([Pk]--jd)sj(n - [pn] + d' 

where sj(n - [,on] + d, d) is the j th  elementary symmetric function of the parts 

n i : = [ n -  [pn] + d + i - 1] 

d 
i = 1  . . . . .  d. 

We wish to compute lim,_® t/(p, d, k, n). To do this we consider a typical 
term in the development of  

(n)k- I([pn] -- d)k_fij(n -- [pn] + d, d), 
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specified by j different parts ni0,. • •, nij_,, and split it into two factors (in a 
suitable way). As n --- oo, these factors tend to easily calculated limits: 

k-j- l  [ p n ] - d - I  pk-j, 
lim I] = 
"-~  t=o n j l 

y 1 n i  t 
lim 1-I = 
n--~ 1=0 K / - - I  

Now there are (d) such terms for eachj .  Therefore, multiplying by (k)j, we get 

d 
(4.3) lim r/(p, d, k, n) --- Y. 

n~o~ j=0 

In order to show that the right-hand side of (4.3) is equal to q(p, d, k), as 
claimed, it is enough to establish 

(4.4) ~l(p , d, k, 2n ) > q(p , d, k, n ), i fn > k .  

Notice that we have dropped the assumption [pn ] > d here. 
The proof of(4.4) uses an idea of Kalai [ 12]. It does not really depend on the 

particular type of sets we are considering. Indeed, let ~ be any family ofn sets, 
and define 2 2  to consist of two copies of each member of ~ .  A purely 
combinatorial argument yields 

(2;) (:) 
f ~ -  1(2 ~ )  ~ fk _ 1(,~) 

(see [ 12], p. 168). We now choose ~ to be Kalai's family ~(n,  d, [.on ]) defined 
in Section 1. Then 

(~) -~ fk_~(;~)=rl (p ,d ,k ,n)  and f tp , ] (~)=0,  

which implies f~2p, l(2 ~ )  = 0. Hence 

( 2 ; ) -  lfk_ 1 (2~)<  r/(p, d, k, 2n). 

This establishes (4.4) and proves the theorem. [] 

The most interesting 'fractional' Helly-type theorem is obtained when 
k = 2. Then 
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q(p, d, 2) = 1 
(1 __p)2 

d 

This is essentially due to Katchalski [13]. In other words, if the intersection 
graph of a family of boxes in R d has more than 

edges, where n is the number of its vertices, then it contains a clique of size 
[pn ] + 1. The result is best possible in the sense described in Definition 4.1. 

To conclude, let us mention three simple consequences of Theorem 4.2. 
First, the behavior of q(p, d, k) for large d is given by 

(4.5) 

This is easily seen by writing r/(p, d, k) as a polynomial in l/d. Next we have 

(4.6) lim r/(p, d, k) = 1, 
p~l  

and finally, perhaps more interesting, 

(d)k 
(4.7) lira ~/(p, d, k) = - -  

p~o d k 

In particular, q(p, d, k) tends to 0 (asp ~ 0) iffk > d. (Compare the remark 
following Theorem C in Katchalski [13].) 
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